A local point interpolation method (LPIM) for static and dynamic analysis of thin beams
نویسندگان
چکیده
The Local Point Interpolation Method (LPIM) is a newly developed truly meshless method, based on the idea of Meshless Local Petrov-Galerkin (MLPG) approach. In this paper, a new LPIM formulation is proposed to deal with 4th order boundary-value and initial-value problems for static and dynamic analysis (stability, free vibration and forced vibration) of beams. Local weak forms are developed using weighted residual method locally. In order to introduce the derivatives of the field variable into the interpolation scheme, a technique is proposed to construct polynomial interpolation with Kronecker delta function property, based only on a group of arbitrarily distributed points. Because the shape functions so-obtained possess delta function property, the essential boundary conditions can be implemented with ease as in the conventional Finite Element Method (FEM). The validity and efficiency of the present LPIM formulation are demonstrated through numerical examples of beams under various loads and boundary conditions. KEYWORD: Meshless Method; Static Analysis; Dynamic analysis; Weak Formulation; Strong Formulation *Corresponding author: Gui-Rong LIU Tel:+65-8746481 Fax:+65-8744795 or 7791459 E-mail: [email protected] (Y.T. GU) [email protected] Computer Methods in applied mechanics and engineering 190 (2001) 5515-5528 2
منابع مشابه
Three dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کامل3-node Basic Displacement Functions in Analysis of Non-Prismatic Beams
Purpose– Analysis of non-prismatic beams has been focused of attention due to wide use in complex structures such as aircraft, turbine blades and space vehicles. Apart from aesthetic aspect, optimization of strength and weight is achieved in use of this type of structures. The purpose of this paper is to present new shape functions, namely 3-node Basic Displacement Functions (BDFs) for derivati...
متن کاملAnalysis of Rectangular Stiffened Plates Based on FSDT and Meshless Collocation Method
In this paper, bending analysis of concentric and eccentric beam stiffened square and rectangular plate using the meshless collocation method has been investigated. For detecting the governing equations of plate and beams, Mindlin plate theory and Timoshenko beam theory have been used, respectively, with the stiffness matrices of the plate and the beams obtained separately. The stiffness matric...
متن کاملA dynamic lattice model for heterogeneous materials
In this paper, the mechanical behavior of three-phase inhomogeneous materials is modeled using the meso-scale model with lattice beams for static and dynamic analyses. The Timoshenko beam theory is applied instead of the classical Euler-Bernoulli beam theory and the mechanical properties of lattice beam connection are derived based on the continuum medium using the non-local continuum theory. T...
متن کاملVibration Analysis of Beams Traversed by a Moving Mass
A detailed investigation into the analysis of beams with different boundary conditions. carrying either a moving mass or force is performed. Analytical and numerical techniques for determination of the dynamic behavior of beams due to a concentrated travelling force or mass are presented. The transformation of the familiar Euler-Bernoulli thin beam equation into a series of ordinary differentia...
متن کامل